DEPARTMENT OF MATHEMATICS, IIT JAMMU, INDIA Instructors: Rahul Kitture and Manmohan Vashisth.

Calculus (Tutorial # 3)

Due Date: 24/12/2020

Sequences and series

- 1. Let $\{a_n\} \subseteq \mathbb{R}$ be a sequence. Then there exists a monotone subsequence of $\{a_n\}$.
- 2. Let $\{a_n\}$ be a sequence such that $a_1 = 1$, $a_2 = 2$ and $a_n := \frac{a_{n-1} + a_{n-2}}{2}$ for $n \ge 3$. Then prove that $\{a_n\}$ is convergent by completing the following steps.
 - (a) Using the monotone convergence theorem, show that $\{a_{2n}\}$ and $\{a_{2n+1}\}$ are convergent subsequences of $\{a_n\}$.
 - (b) Show that $\lim_{n\to\infty} (a_{2n+1} a_{2n}) = 0$.

Also find $\lim_{n\to\infty} a_n$.

- 3. Let $a_1 > 0$ is fixed and define the sequence $\{a_n\}$ by $a_{n+1} := \frac{1}{2} \left(1 + \frac{1}{a_n}\right)$ for $n \in \mathbb{N}$, then show that $\{a_n\}$ converges. Also find its limit.
- 4. Let $\{a_n\}$ be a bounded sequence of real numbers. Let

 $S := \{a : \exists \text{ a subsequence } \{a_{n_k}\} \text{ of } \{a_n\} \text{ such that } \lim_{k \to \infty} a_{n_k} = a\}$:= set of all subsequential limits of $\{a_n\}$.

Then $\limsup a_n \in S$, $\liminf a_n \in S$ and $S \subseteq [\liminf a_n, \limsup a_n]$.

- 5. Show that the sequence $\{a_n\}$ defined by $a_n := \left(1 + \frac{1}{n}\right)^n$ for $n \in \mathbb{N}$ is convergent.
- 6. Let $\{a_n\} \subseteq \mathbb{R}$ be such that $a_{n+1} \leq a_n + \frac{1}{n}$ for all $n \geq 1$. Is it always necessary that $\{a_n\}$ has to converge? Justify your answer.
- 7. Find the limits of the following sequences $\{a_n\}$ for $n \in \mathbb{N}$.
 - (a) $a_n = r^n$, for fixed r such that $|r| \le 1$ and $r \ne -1$
 - (b) $a_n = nr^n$, for fixed r such that |r| < 1
 - (c) $a_n = r^{\frac{1}{n}}$, for fixed r > 0.
 - (d) $a_n = n^{\frac{1}{n}}$
 - (e) $a_n = \frac{a^n}{n!}$, for some fixed $a \in \mathbb{R}$
 - (f) $a_n = \left(n^{\frac{1}{n}} 1\right)^n$.
- 8. Can you find a sequence $\{a_n\}$ such that $\lim_{n\to\infty} (a_{n+1}-a_n)=0$ but $\{a_n\}$ is not a Cauchy sequence?

- 9. Prove: a sequence $\{a_n\} \subseteq \mathbb{R}$ has no convergent subsequence if and only if $\lim_{n\to\infty} |a_n| = \infty$.
- 10. For any bounded sequence $\{a_n\}$ of non-zero real numbers, prove that

$$\liminf \left| \frac{a_{n+1}}{a_n} \right| \le \liminf |a_n|^{1/n} \le \limsup |a_n|^{1/n} \le \limsup \left| \frac{a_{n+1}}{a_n} \right|.$$

Hence, show that convergence of $\left\{\frac{|a_{n+1}|}{|a_n|}\right\}$ implies the convergence of $\{|a_n|^{1/n}\}$.

- 11. Let $a_n > 0$ for all $n \in \mathbb{N}$ and $\sum_{n=1}^{\infty} a_n < \infty$. Show that $\exists c_n > 0$, for all $n \in \mathbb{N}$ such that $\lim_{n \to \infty} c_n = \infty$ and $\sum_{n=1}^{\infty} c_n a_n < \infty$.
- 12. Let $a_n > 0$ such that $a_n \ge a_{n+1}$ for all $n \in \mathbb{N}$ and $\sum_{n=1}^{\infty} a_n < \infty$. What can you say about the convergence of the sequence $\{na_n\}$? What would be your conclusion if the second part of the hypothesis is removed i.e. $\sum_{n=1}^{\infty} a_n$ is divergent.
- 13. Can you find a sequence of positive real numbers $\{a_n\}$ such that $a_n \to 0$ but $\sum_{n=1}^{\infty} a_n^p$ is divergent for all $p \ge 1$?
- 14. Let $\{a_n\}$ be a sequence of positive real numbers such that $\sum_{n=1}^{\infty} a_n < \infty$. Prove that $\sum_{n=1}^{\infty} \sqrt{a_n a_{n+1}}$ is also convergent. Does the converse hold?
- 15. Test the convergence of the following series:

$$(a) \sum_{k=0}^{\infty} \frac{e^{-k}}{\sqrt{k+1}} \quad (b) \sum_{n=1}^{\infty} (\sqrt{n+1} - \sqrt{n}) \quad (c) \sum_{n=1}^{\infty} \frac{n}{n^4 + n^2 + 1} \quad (d) \sum_{n=1}^{\infty} \frac{2^n n!}{n^n}$$

$$(e) \sum_{n=1}^{\infty} \frac{1}{(n+2)\log(n+2)} \quad (f) \quad \sum_{n=2}^{\infty} \frac{1}{n(\log n)^p} \quad (g) \quad \sum_{n=2}^{\infty} \frac{1}{(\log n)^p} \quad (h) \quad \sum \frac{\log n}{\sqrt{n(n+1)}}$$

(i)
$$\sum_{n=1}^{\infty} \frac{1}{2^n - n}$$
 (j) $\sum_{n=1}^{\infty} \log(1 + \frac{1}{n})$ (k) $\sum_{n=1}^{\infty} \frac{n^p}{e^n}$, for $p \ge 0$ (l) $\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$

$$(m) \sum_{n=3}^{\infty} \frac{1}{n(\log n)(\log \log n)} (n) \sum_{n=1}^{\infty} \frac{1}{n \log n(\log \log n)^2} (o) \sum_{n=1}^{\infty} \frac{2 + (-1)^n}{2^n} (p) \sum_{n=1}^{\infty} n e^{-n^2}$$

$$(v) \sum_{n=1}^{\infty} \frac{\sin(\frac{1}{n})}{n} (w) \sum_{n=1}^{\infty} \left(1 - n\sin(\frac{1}{n})\right) (x) \sum_{n=1}^{\infty} \frac{1}{n(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n})}$$

$$(y) \sum_{n=1}^{\infty} a_n, \text{ where } a_n = \begin{cases} \frac{1}{n}, & \text{if } n \text{ square} \\ \frac{1}{n^2} & \text{otherwise} \end{cases}$$

$$(z) \sum_{n=1}^{\infty} a_n, \text{ where } a_n = \begin{cases} \frac{1}{n^2}, & \text{if } n \text{ is odd} \\ -\frac{1}{n} & \text{if } n \text{ is even} \end{cases}$$